Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wireless sensor networks play a pivotal role in a myriad of applications, including agriculture, health monitoring, tracking and structural health monitoring. One crucial aspect of these applications involves accurately determining the positions of the sensors. In this paper, we study a novel Nystrom based sampling protocol in which a selected group of anchor nodes, with known locations, establish communication with only a subset of the remaining sensor nodes. Leveraging partial distance information, we present an efficient algorithm for estimating sensor locations. To demonstrate the effectiveness of our approach, we provide empirical results using synthetic data and underscore the practical advantages of our sampling technique for precision agriculture.more » « less
-
Classical multidimensional scaling (CMDS) is a technique that embeds a set of objects in a Euclidean space given their pairwise Euclidean distances. The main part of CMDS involves double centering a squared distance matrix and using a truncated eigendecomposition to recover the point coordinates. In this paper, motivated by a study in Euclidean distance geometry, we explore a dual basis approach to CMDS. We give an explicit formula for the dual basis vectors and fully characterize the spectrum of an essential matrix in the dual basis framework. We make connections to a related problem in metric nearness.more » « less
-
We study the problem of determining the configuration of n points by using their distances to m nodes, referred to as anchor nodes. One sampling scheme is Nystrom sampling, which assumes known distances between the anchors and between the anchors and the n points, while the distances among the n points are unknown. For this scheme, a simple adaptation of the Nystrom method, which is often used for kernel approximation, is a viable technique to estimate the configuration of the anchors and the n points. In this manuscript, we propose a modified version of Nystrom sampling, where the distances from every node to one central node are known, but all other distances are incomplete. In this setting, the standard Nystrom approach is not applicable, necessitating an alternative technique to estimate the configuration of the anchors and the n points. We show that this problem can be framed as the recovery of a low-rank submatrix of a Gram matrix. Using synthetic and real data, we demonstrate that the proposed approach can exactly recover configurations of points given sufficient distance samples. This underscores that, in contrast to methods that rely on global sampling of distance matrices, the task of estimating the configuration of points can be done efficiently via structured sampling with well-chosen reliable anchors. Finally, our main analysis is grounded in a specific centering of the points. With this in mind, we extend previous work in Euclidean distance geometry by providing a general dual basis approach for points centered anywhere.more » « less
-
The Euclidean distance geometry (EDG) problem is a crucial machine learning task that appears in many applications. Utilizing the pairwise Euclidean distance information of a given point set, EDG reconstructs the configuration of the point system. When only partial distance information is available, matrix completion techniques can be incorporated to fill in the missing pairwise distances. In this paper, we propose a novel dual basis Riemannian gradient descent algorithm, coined RieEDG, for the EDG completion problem. The numerical experiments verify the effectiveness of the proposed algorithm. In particular, we show that RieEDG can precisely reconstruct various datasets consisting of 2- and 3-dimensional points by accessing a small fraction of pairwise distance information.more » « less
-
The Euclidean distance geometry (EDG) problem is a crucial machine learning task that appears in many applications. Utilizing the pairwise Euclidean distance information of a given point set, EDG reconstructs the configuration of the point system. When only partial distance information is available, matrix completion techniques can be incorporated to fill in the missing pairwise distances. In this paper, we propose a novel dual basis Riemannian gradient descent algorithm, coined RieEDG, for the EDG completion problem. The numerical experiments verify the effectiveness of the proposed algorithm. In particular, we show that RieEDG can precisely reconstruct various datasets consisting of 2- and 3-dimensional points by accessing a small fraction of pairwise distance information.more » « less
An official website of the United States government

Full Text Available